Evolution of male tail development in rhabditid nematodes related to Caenorhabditis elegans.
نویسنده
چکیده
The evolutionary pathway that has led to male tails of diverse morphology among species of the nematode family Rhabditidae was reconstructed. This family includes the well-studied model species Caenorhabditis elegans. By relating the steps of male tail morphological evolution to the phenotypic changes brought about by developmental mutations induced experimentally in C. elegans, the goal is to identify genes responsible for morphological evolution. The varying morphological characters of the male tails of several rhabiditid species have been described previously (Fitch and Emmons, 1995, Dev. Biol. 170:564-582). The developmental events preceding differentiation of the adult structures have also been analyzed; in many cases the origins of varying adult morphological characters were traced to differences during ontogeny. In the present work, the evolutionary changes producing these differences were reconstructed in the context of the four possible phylogenies supported independently by sequences of 18S ribosomal RNA genes (rDNA). Two or more alternative states were defined for 36 developmental and adult morphological characters. These characters alone do not provide sufficient data to resolve most species relationships; however, when combined with the rDNA characters, they provide stronger support for one of the four rDNA phylogenies. Assuming a model of ordered transformations for multistate developmental characters generally results in greater resolution. Transformations between character states can be assigned unequivocally by parsimony to unambiguous branches for most of the characters. Correlations are thereby revealed for some of the developmental characters, indicating a probability of a shared developmental or genetic regulatory pathway. Four of the unequivocal character state changes on unambiguously supported branches closely resemble the phenotypic changes brought about by known mutations in C. elegans. These mutations define genes that are known to act in genetic regulatory hierarchies controlling pattern formation, differentiation, and morphogenesis. Although these studies are still at an early stage, these results strongly suggest that parallel studies of developmental mutants in C. elegans and of morphological and developmental evolution among related nematodes will help define genetic changes underlying the evolution of form.
منابع مشابه
Evolution of "rhabditidae" and the male tail.
Evolution of diverse male tail epidermal features of representative species in the family Rhabditidae (Nematoda:Rhabditida) was mapped by parsimony on a molecular phylogeny inferred with nearly complete DNA sequences of small subunit ribosomal RNA genes. Although the molecular phylogeny is consistent with some previously proposed relationships, there are also some major differences, suggesting ...
متن کاملThe phylogenetic relationships of Caenorhabditis and other rhabditids.
C. elegans is a member of a group of nematodes called rhabditids, which encompasses a large number of ecologically and genetically diverse species. A new, preliminary phylogenetic analysis is presented for concatenated sequences of three nuclear genes for 48 rhabditid and diplogastrid species (including 10 Caenorhabditis species), as well as four species representing the outgroup. Although many...
متن کاملCaenorhabditis elegans is a nematode.
Caenorhabditis elegans is a rhabditid nematode. What relevance does this have for the interpretation of the complete genome sequence, and how will it affect the exploitation of the sequence for scientific and social ends? Nematodes are only distantly related to humans and other animal groups; will this limit the universality of the C. elegans story? Many nematodes are parasites; can knowledge o...
متن کاملEvolution of development in nematodes related to C. elegans.
The knowledge about C. elegans provides a paradigm for comparative studies. Nematodes are very attractive in evolutionary developmental biology given the species richness of the phylum and the easiness with which several of these species can be cultured under laboratory conditions. Embryonic, gonad, vulva and male tail development were studied and compared in nematodes of five different familie...
متن کاملSomatic polyploidization and cellular proliferation drive body size evolution in nematodes.
Most of the hypodermis of a rhabditid nematode such as Caenorhabditis elegans is a single syncytium. The size of this syncytium (as measured by body size) has evolved repeatedly in the rhabditid nematodes. Two cellular mechanisms are important in the evolution of body size: changes in the numbers of cells that fuse with the syncytium, and the extent of its acellular growth. Thus nematodes diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Systematic biology
دوره 46 1 شماره
صفحات -
تاریخ انتشار 1997